
Venous leg ulcers A guide to assessment and management

Understanding venous leg ulcers

Venous leg ulcers are often hard to heal wounds that can develop after a minor injury and when blood doesn't flow properly through the veins. Leg ulcers are a major health and healthcare problem, affecting people throughout the world. Venous leg ulcers could account for 50–60% of all leg ulcers^{1,2}, creating a significant financial burden on healthcare resources. The occurrence of leg ulcers may increase in future, due to an ageing population, obesity, concurrent illness, intravenous drug misuse and social deprivation.

Quality of life issues for venous leg ulcer patients³

In addition to the significant time and financial burden to the healthcare provider, venous leg ulcers also bring a significant cost to the patient, including physical, psychological, emotional and financial.

Hofman et al (1997)⁴ describes pain as the worst part of having a leg ulcer because it is so often underestimated. This may result in poor pain management strategies and patient suffering. The wound can affect the patient's work, even causing loss of employment. This may result in anxiety, depression and potential financial risk. Activities normally taken for granted – holidays, swimming, playing with children – may not be possible, due to one or more symptoms of the ulcer^{5,6}.

Quality of life issues may be worse for patients who do not follow their treatment plan; which could be due to failings at the point of assessment⁵⁻⁶.

VLU affects approximately **1% of**

the population and 3% of people over 80 years of age⁷ in westernized countries

Approximately

Venous leg ulceration (VLU) is the most common type of leg ulceration, comprising

Approximately **7% of** VLUs remain unhealed after 5 years^{8,9,10}

It is most important that time is invested in staff training and education to ensure that correct assessment is performed, an accurate diagnosis is made and an appropriate treatment plan developed.

Aetiology of venous leg ulcers

The definition of venous leg ulcers¹¹

Wounds International defines a venous leg ulcer as 'an open lesion that usually occurs on the medial (inner) side of the lower leg between the ankle and the knee as a result of chronic venous insufficiency (CVI) and ambulatory venous hypertension and that shows little progress towards haling with 4–6 weeks of initial occurrence'

Cause of venous leg ulcers^{11,12}

VLUs are due to increased pressure within the veins of the lower limb caused by chronic venous insufficiency (CVI). This can be caused by reflux in any of the venous systems – whether superficial, perforator, or deep – when the valves of the veins have failed, or the vein has become obstructed.

The venous circulation can be separated into the deep, superficial and communicating or perforating vessels. All the veins have one-way valves to prevent backflow of venous blood and the flow towards the heart is assisted by the muscles of the lower leg (the calf muscle pump). If the valves fail to close adequately, the backflow of venous blood dilates superficial veins and creates a high pressure in the superficial venous system (venous hypertension). This high venous pressure affects the capillary dynamics in the tissues, leading to dilation of capillary vessels, restricting the transfer of nutrients and allowing larger molecules to leak into the tissues. It also affects the collection of waste products, which become trapped in the tissues. Venous hypertension leads to visible signs of brown staining from hemosiderin deposits, oedema and varicose eczema.

The appearance of a venous leg ulcer¹¹

- The typical venous leg ulcer have irregular sloping margins, usually shallow wounds but **can vary in size** from small to encircling the leg.
- They are often highly exuding with a fibrinous or/and granulating base.
- They can also be very painful.
- The arterial circulation is not significantly compromised.

If the venous leg ulcer have a concomitant arterial occlusive disease they are known as 'Mixed aetiology leg ulcers' (read more at page 4). However, It may also refer to venous leg ulcers with other contributory factors, e.g. diabetes, malignancy, and arthritis.

VLUs can start as venous eczema and tissue breakdown exacerbated by itching and scratching or it may be due to simple trauma to the skin.

Classification of the VLU and the venous disease

Basic CEAP classification system^{3,5,13}

CEAP is a commonly used venous disease classification system.

CEAP stands for:

C: Clinical (see below), E: Etiology, A: Anatomy, P: Pathophysiology

Oedema

Reticular veins

Varicose veins

Categorising the VLU¹¹

Once aetiology is established, categorisation of the ulcer can help to determine prognosis or requirement for specialist referral. Venous leg ulcers are categorized as 'Simple' VLU, 'Complex' VLU or a Mixed aetiology ulcer³². In addition to guiding management, classification of the ulcer may be useful in determining treatment goals.

`Simple' VLU

- ABPI 0.8–1.3
- Area <100cm²
- Present for <6months

`Complex' VLU

- ABPI 0.8–1.3
- Area $\geq 100 \text{ cm}^2$
- Present for \geq 6 months
- Controlled cardiac failure
- Current infection and/or history of recurrent infections
- History of non-concordance
- Wound has failed to reduce in size by 20-30% at 4-6 weeks despite best practice

Mixed aetiology ulcer

- ABPI < 0.8 or > 1.3*
- Symptoms of arterial disease, e.g. intermittent claudication, rest pain, even if ABPI within normal range
- Diabetes/peripheral neuropathy
- Rheumatoid arthritis (vasculitic ulcer)
- Uncontrolled cardiac failure

*If ABPI <0.5 urgent referral for consideration for revascularisation should be made.

C4 a, C4 b Eczema or pigmentation lipodermatosclerosis or atrophie blanche

C5 Healed VLU

C6 Active VLU

Holistic assessment of a patient with a venous leg ulcer

To ensure the correct treatment is provided, an accurate assessment must be performed to identify the underlying aetiology and aid in the diagnosis of the leg ulcer. This can be done with a combination of holistic assessment and investigations^{3,6}.

Tables 1–5 set out what to consider when assessing a venous leg ulcer. A full blood count should also be carried out to exclude diabetes, anaemia, and to rule out other aetiology and causes of oedema. If possible assesss the venous system with a Duplex scan.¹¹

Referring for other conditions

Any patient presenting with significant arterial disease must be referred to the local vascular team. You should also discuss patients with concomitant diseases – such as diabetes mellitus or rheumatoid arthritis – with the appropriate medical team^{3,6}.

TABLE 1 Assessing arterial blood flow and venous insufficiency¹⁴

Use a hand-held Doppler or an automated ankle-brachial index measuring device to assess arterial blood flow with a reading on the Ankle-Brachial Pressure Index (ABPI). You should also listen for venous reflux in the valves. Using the Doppler and recording an ABPI is only part of the assessment.

Reading*	Interpretation
≤ 0.5	Severe Peripheral arterial disease (PAD), critical limb ischemia unsafe to use compression. Urgent vascular surgeon referral. Poor healing potential.
0.51-0.79	Moderate PAD – Use modified compression with caution. Absolute systolic ankle pressure should be >60mmHg. Routine vascular specialist referral. Limited healing potential.
0.8-0.9	Mild PAD. Healing potential.
> 0.91-0.99	Borderline PAD. Good healing potential.
> 1.0-1.4	Normal. Good healing potential.
> 1.4 Common to confirm diabetic specia	Falsely elevated due to calcification of vessel wall. in diabetic population. Use Toe-brachial index (TBI) PAD and assess blood flow. Refer to vascular/ alist.

* This is a guide only and cannot replace clinical judgment. There might also be different guides locally, example in Europe.

E 2 Past medical history in relation to venous disease^{3,6}

- Deep vein thrombosis
- Family history
- Varicose veins
- Previous surgery or treatment of varicose veins
- Episodes of immobility
- Previous surgery
- Joint disorders such as arthritis
- Obesity
- Ulcer history

TABLE 4 Limb and skin inspection^{3,6,15}

- Shape of limb
- Limb circumference (ankle and calf)
- Oedema and position/extent of oedema
- Visible varicose veins
- Eczema (wet/dry)
- Lipodermatosclerosis
- Infection e.g. erysipelas
- Hyperkeratosis/dry skin
- Pigmentation/staining of the skin
- Atrophie blanche

Past medical history in relation to arterial disease^{3,6}

- Cardiovascular disease
- Angina
- Myocardial infarction
- Cerebral Vascular Accident
- Intermittent claudication
- Hypertension
- Diabetes Mellitus
- Rheumatoid arthritis
- History of risk factors such as smoking, high cholesterols and it is also important to note medication

TABLE 5 Wound assessment^{3,6,15}

- Location, Size and Depth
- Wound bed: Red granulation, presence of fibrin and slough. Check for areas of the ulcer that appear different such as abnormal granulation which may indicate malignancy.
- Wound margin and surrounding skin:eg undermining, rolled edge, mixed blue red (could indicate vasculitis), macerated peri wound, oedema
- Exudate: level, colour and viscosity
- Pain: Location, frequency, cause, type, intensity and duration
- Odour: Presence and nature
- Local signs of Infection or/and Biofilm

If ABPI <0.5 urgent referral for consideration for revascularisation should be made¹¹

Arterial impairment occurs in 15–20% of venous ulcers, they are known as mixed aetiology ulcers¹⁶

Treatment of a venous leg ulcer

Compression therapy

Correctly applied compression therapy is the gold-standard treatment and has been demonstrated to improve healing rates in patients with existing venous leg ulcers and to reduce ulcer recurrence^{17,18} it should be used wherever possible as a first-line treatment^{6,19}. This is essential to restore a normal return of venous blood back to the heart – achieved by applying an external force or support to the limb – which reverses the venous hypertension, allows damaged valves to close and directs blood flow in the right direction. It is recommended that a force – approximately 40–50mmHg pressure – at the ankle is required to treat venous ulcer¹⁴.

This pressure should be applied so that pressure at the ankle is higher than that over the calf. In theory, if the compression bandage is applied at the same tension all the way up the lower leg, a gradual reduction in pressure from ankle to knee, called graduated compression, will occur automatically¹⁵. It is important to note that compression therapy does not cure the underlying condition. It aims to correct and control.

The pressure achieved when applying a bandage depends on a number of factors¹⁵:

- The number of layers of bandage
- The bandage tension
- The bandage width
- The limb circumference

Optimising the benefits of compression therapy involves the application of the right type of compression, for the right duration, and in a way that is acceptable to the patient. There are different options available when choosing compression therapy for the patient:

- Elastic/long-stretch compression system
- Inelastic/short-stretch compression system or multi-layer systems (two-and four-layer)
- Adjustable wrap-around compression system
- Intermittent Pneumatic Compression (IPC) devices
- Compression hosiery

The importance of padding:

Compression bandages can cause tissue damage if applied incorrectly. Additional padding may be required beneath a compression therapy system to adjust shape and protect an area at risk of pressure damage or to manage excessive exudate. Application of padding around a bony prominence will change the shape of the prominence and therefore reduce the amount of pressure applied by the compression therapy system²⁰.

The tibial crest, the prominent anterior edge of the tibia that runs the length of the lower leg, is particularly vulnerable to pressure damage, but also the malleoli and abnormal shaped limbs need additional padding²⁰.

Sometimes extra padding around the toes may be required for protection to reduce the risk of trauma for patients who have neuropathy 21 .

Compression therapy and exudate:

The most important factor in reducing exudate levels from the wound is appropriate sustained compression therapy. Dressings can be used to suport exudate management, however, the principle agent for reducing oedema is the use of compression therapy. Exudate levels are often high at the beginning of the compression therapy but exudate levels will reduce as venous return improves and limb oedema and inflammation decreases¹¹.

Compression hosiery

The fitting of compression hosiery is essential for the prevention of venous ulcers in someone with significant indicators of disease. And to prevent the recurrence of a venous leg ulcer once healed. Venous leg ulcers can also be treated with compressionhosiery, which are available as leg ulcer hosiery kit.

As with compression bandaging, it is essential that the patient has had a full assessment – in particular to exclude arterial disease.

A wound size reduction of less than 20–30% in 4–6 weeks should trigger reassessment. Reconsider quality of compression (i.e. level of compression applied, type of compression therapy) and assess level of concordance. Refer to a specialist if considered appropriate¹¹.

Factors that affect choice of compression therapy system¹¹

- Training, competency and experience of the healthcare practitioner applying compression
- Wound status, e.g. size of the ulcer and exudate levels
- Patient mobility: In patients who have restricted mobility, i.e. have low calf muscle pump activity, stiff compression therapy systems e.g. multi-component systems are preferred. For patients who are completely immobile, intermittent pneumatic compression or hosiery may be more suitable.
- Patient dexterity and ability to self-apply compression therapy
- Previous experiences of the patient and likely concordance with treatment
- Pain levels
- Access to care, e.g. the possible frequency of clinic or home care visits
- Level of compression required, e.g. if adjustment is likely to be required to enhance tolerance, can this be undertaken with the proposed system?
- Availability of compression therapy systems: where restrictions occur, minimum provision should be multi-component compression bandaging and compression hosiery

S.T.R.I.D.E is a compression selection guide that can be used to find the right compression therapy for the individual and also what precautions and contraindications that need to be considered¹⁴.

Wound management

Remember: the compression therapy is correcting the underlying venous disorder that allows the ulcer to heal. However, it is also important to ensure an accurate wound assessment and that an appropriate wound dressing is used, see page 12–13.

The wound dressing is used to protect the wound and manage exudate effectively and some properties of the dressing is important when used under compression therapy¹¹:

- Maintains a moist wound environment while able to handle varying levels of exudation
- Absorbs and retains fluid when used under compression, i.e. prevents strikethrough
- Low profile, i.e. unlikely to leave an impression in the skin
- Conforms to the wound bed
- Does not adhere to the wound bed (non-adherent)
- Comfortable
- Atraumatic does not damage the wound bed or periwound skin on removal
- Low allergy potential
- Remains intact on removal
- Cost-effective, i.e. offers optimal wear time

'Effective compression prescription requires matching the compression selection to the patient presentation, not to the diagnosis alone.'¹⁴

Improving skin condition

An important aspect of venous leg ulcer management is care of the skin. The skin loses it natural oils, becoming very dry and hyperkeratosis may develop in the presence of venous hypertension. Regular meticulous skin care is vital. Wash the skin with a soap substitute and debride all dead dry skin carefully. The skin should then be dried thoroughly.

The skin will also need to be moisturised with a moisturiser that is suitable for the patient. Moisturisers are available with different proportions of lipids to water, and include ointments, creams and lotions. The higher the proportion of lipids, the more effective the moisturiser, but the harder it is to use. Moisturisers may contain preservatives, and some of these can be irritants, especially in patient with venous disease.

Other conservative treatments

There are several conservative treatments and preventative measures. Regular exercise, weight management and diet all play their part in preventing venous leg ulcers. It is also a good idea to keep the affected leg elevated.

Surgical intervention for venous disorders

All patients with the clinical signs and symptoms of venous disease require an assessment (e.g venous duplex scan) of the venous system to identify areas of venous insufficiency that may

be suitable for endovenous intervention²². A RCT study from 2018²² concluded that early endovenous ablation in patients with venous ulceration resulted in faster healing and more time free from ulceration than deferred intervention.

There is still no reliable corrective surgical intervention to treat deep veins⁵. As a result, surgical interventions are mainly on superficial vessels and include:

- Invasive surgery on superficial vessels ligation and stripping
- Endovascular foam sclerotherapy
- Endovenous radiofrequency ablation
- Endovenous laser therapy
- Subfascial endoscopic perforater surgery
- Venous stenting of deep iliocaval and/or infrainguinal veins

Education and training of the patient

Education and training of the patient, caregiver and family is essential in enhancing concordance. Promoting understanding of the cause of the wound and the way compression therapy acts and the different compression options that are available. This may encourage the patient to be active and to allow the ulcer less control over their daily life. Concordance may be further encouraged by sharing progress with the patient, e.g. reductions in wound size, pain, exudate level or oedema¹¹.

Management of infection and biofilm

When the wound is infected²³

The wound should be monitored for signs of infection, as part of the ongoing wound assessment. There is no single test to definitively diagnose infection; wound infection is diagnosed by clinical assessment of the wound and the whole patient. This is usually supported by microbiological data. Some patients may be more at risk of infection than others – particularly those with co-existing medical conditions such as diabetes mellitus and those on medications such as immunosuppressants and steroids. Certain social and psychological factors may also have an impact.

Stages in wound infection continuum.

Contamination²³

All open wounds are contaminated with microbes. Wound contamination is the presence of non-proliferating microbes within a wound without any host reaction. No antimicrobials are indicated.

Colonisation²³

The growth of microbial organisms in the wound but with no ill effect to the host. Microbial growth occurs at a non-critical level. Wound healing is not impeded or delayed. No antimicrobials are indicated.

Localised infection^{23,24,25}

Microbial growth, multiplication and invasion into host tissue leads to cellular injury and overt host immunological reactions; wound healing is interrupted. In chronic wounds, local infection often presents as subtle signs. These can be considered covert signs of infection – such as delayed wound healing; increase of exudate; pain (tenderness); malodour; sometimes hypergranulation; and bleeding of friable granulation tissue. Subtle signs may develop into classic, overt signs of infection – such as swelling, heat, redness and pain. Interventions with topical antimicrobials are indicated.

Spreading infection²³

Cellulitis beyond a 2cm margin and spreading, increased pain heat and swelling, deterioration and extension of the wound and systemic symptoms. Spreading infection may involve deep tissue, muscle, fascia, organs or body cavities. Intervention with both systemic and topical antimicrobials are indicated.

Systemic infection²³

Microorganisms spread throughout the body via the vascular or lymphatic systems. Signs of systemic infection affect the body as a whole and may include a systemic inflammatory response, sepsis, septic shock, organ dysfunction or failure – and sometimes death. Both systemic and topical antimicrobials are required.

Biofilm^{23,26}

Biofilm is an aggregate of bacteria encapsulated in a selfproduced extracellular matrix. The biofilm is tolerant to antimicrobial agents and the host defence. The biofilm is not visible to the naked eye, but studies using high-powered microscopes – alone or in combination with molecular techniques – have shown that 60–100% of chronic wounds contain biofilm, and that these somehow delay wound healing.

Management of infection should include^{23,27}:

- Optimising the host response
- Pain control
- Management of co-existing medical conditions, e.g. glycaemic control
- Minimising or eliminating risk factors for infection, where feasible
- Optimising nutritional status and hydration
- Treating other sites of infection, e.g. urinary tract infection
- Optimising the wound bed and reducing the bacterial load
- Preventing further wound contamination or crosscontamination with good infection control
- Antimicrobial therapy topical antiseptics/antimicrobials +/systemic antibiotics, depending on stage of infection
- Wound cleansing and debridement to remove dead tissue, such as yellow slough

Debridement stiumulate wound healing and it has been demonstrated that it provides a treatment window of opportunity in which the biofilm defences are temporarily interrupted. This allowing increased efficacy of systemic and topical management strategies. How often debridement should be performed have been discussed and need more research but experts suggest that debridement should be performed at least weekly in combination with therapeutic cleansing with topical antiseptics and application of antimicrobial wound therapy dressings.

> Some patients may be more at risk of infections than others and include those with co existing medical conditions such as Diabetes Mellitus

Holistic assessment and manageme

Assessment of patients and lower limb

Medical history

• Physical, physiological and psychosocial health

Lower limb assessment 2

Signs of venous disease e.g.:

- Oedema
- Eczema
- Lipodermatosclerosis
- Altered shape inverted 'champagne bottle'
- Haemosiderin pigmentation
- Atrophie blanche
- Other skin changes
- Evidence of healed ulcers
- Varicose veins

3

- Ankle flare (distended veins in foot arch or ankle region)

Vascular status and oxygenation levels

- ABPI assessment with a Doppler. Referral to vascular specialist when ABPI: <0,8 or >1.4 or absolute systolic ankle pressure <60mmHg (or follow local protocols). When ABPI ≤0.5 urgent referral to vascular surgeon. A patient with an ulcer should be referred to vascular centre for consideration of venous interventions.
- Toe-brachial index (TBI) when ABPI: <0,8 or >1.4
- Consider oxygen assessment e.g. with transcutaneous oximetry (TcPO₂)

Wound and periwound

Infection or/and biofilm:

Local signs of infection can be: increased exudate, nonhealing, malodour, friable or discoloured granulation tissue, redness, pain, heat and swelling.

Wound bed, status/colour:

- Yellow slough
- Red granulation tissue, pink epithelialisation

Exudate

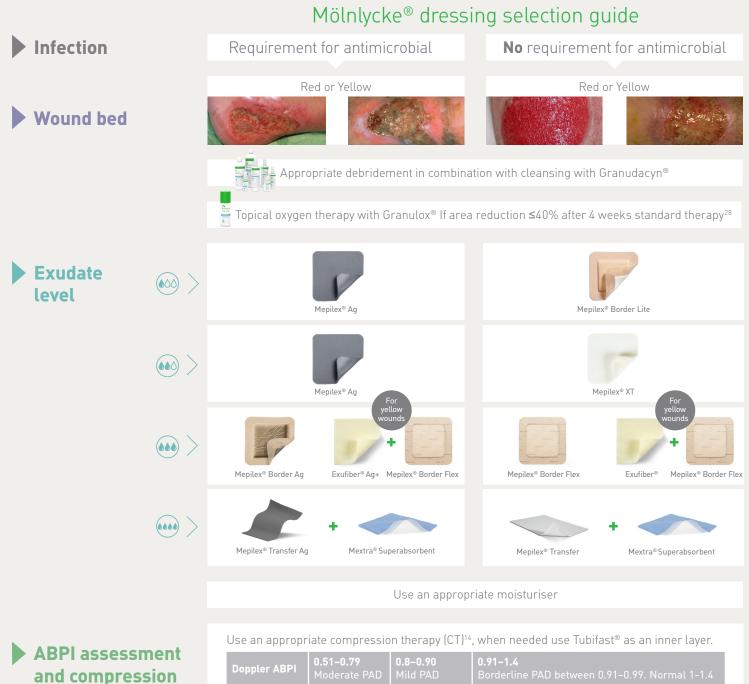
- Amount (none, low, moderate, high)
- Consistency/colour
- Wound location
- Wound size (area/depth)
- Wound edge (raised edge, undermining)
- Surrounding skin (maceration/excoriation, erythema, oedema)
- Pain (location, frequency, cause, type, intensity and duration)
- Odour (presence and nature)

5 Classification

Classification of Chronic venous insufficiency (CVI) with CEAP clinical classification. And Classification of the VLU as `Simple' or `Complex'.

Goals of treatment, education and concordance with the patient

Management of VLU^{5,11}


A VLU has a negative impact on all aspects of the patients daily living and need to be considered in the treatment plan. VLU may cause depression, anxiety and social isolation, but also leaking exudate, pain, odour, restricted mobility and sleep disturbance may be particularly challenging and distressing for these patients.

- A Multidisciplinary team (MDT) can be a resource for planning and treat a patient with VLU, for example
- Recommend the best compression therapy for the individual
- Nutritional advice
- Infection control and treatment
- Full vascular assessment and treatment
- Assessment and treatment of different skin problems

Remember:5,11,14

- Assess and manage pain (local and systemic) before dressing changes.
- Be aware of mixed aetiology that includes venous disease. For example if other factors are present, e.g arterial disease, diabetes or rheumatoid arthritis (vasculitic ulcer).
- Wound biopsy may be indicated in patients who have delayed healing and a wound suspected of being malignant.
- Education and training of the patient, caregiver and family is essential in enhancing concordance.
- Reassess if wound area reduction is less than 20–30% after 4–6 weeks of optimal compression treatment.

nt of patients with venous leg ulcers

therapy**

15-30 mmHg* 15-40 mmHg* 15-50 mmHg **CT in mmHg**

* Use modified CT with caution. Absolute systolic ankle pressure should be >60mmHg14

** This is a guide only and cannot replace clinical judgment. There might also be different guides locally, example in Europe.

Optimal wound management with provision of local treatment need to be supported with appropriate management of systemic disease, compression therapy and debridement. Remember that surgical debridement is contraindicated in some circumstances, for example if ischemia is present or pyoderma gangrenosum²

- Monitor at each dressing change and reassess regularly. Be sure that the dressing is compatible with the compression therapy
- If you need to cut the dressing, consider using nonbordered products
- The choice of dressings must be based on local protocols and clinical judgement

Proven choice for a better outcome

Safetac[®] is the original less-pain contact layer with silicone adhesion. We designed it to mould softly to skin without sticking to the moist wound³⁰ – so you can remove it easily without damaging the skin³¹. That means less pain for your patients³².

Safetac also protects new tissue and intact skin - so wounds remain undisturbed to support faster natural healing³³⁻³⁶ And it seals the wound margins to protect skin from damaging leaks and maceration^{37,38}. This combination of less pain³² and less skin damage^{31,34-37,39} – to support faster healing³³⁻³⁶ – can also reduce the cost of treatment^{34,35,39}

You can trust Mölnlycke® dressings with Safetac, for better patient and economic outcomes.

With Safetac³¹

Legs matter (legsmatter.org) provide patients with these 10 steps to keep the legs and feet healthy:⁴⁰

- 1. Moisturise your legs with an unscented moisturiser every day.
- 2. Check your skin for breaks, cracks and swelling.
- **3.** If broken areas are not healing or you notice any changes in the colour or texture of your skin, visit your local health care services for advice.
- 4. Try to walk for about 30 minutes at least three times a week.
- If walking is difficult, just move your feet around in circles, then up and down

 you can do this sitting down. Move your legs and feet regularly in any way
 that feels good for you it's great for circulation and reducing swelling.
- **6.** Avoid standing for a long time.
- Maintain a healthy weight carrying extra weight increases the chances of developing problems in your legs and feet and makes swelling worse. Aim to eat a well-balanced diet and get enough exercise.
- **8.** Stop smoking smoking decreases the blood flow to the legs and feet, and makes healing more difficult. Stopping will help to keep your legs healthy.
- 9. If you're prone to swelling in your legs and feet or you have problems with your veins, then compression may be helpful. Compression socks or tights are usually worn daily but your healthcare professional will advise you on what's best for you.
- **10.** They might feel a little tight or uncomfortable at first but **they shouldn't hurt**. If they do, ask your healthcare professional for a different option of compression or just a different style.

Take charge of your own leg and foot health by: paying attention to your legs and feet, going to your health care services if things aren't looking right, demanding better or different care if your leg or foot isn't getting better.

Dressing information

Mepilex[®] Border Lite

With Safetac

- Thin foam dressing with soft silicone wound contact layer
- For non to low-exuding wounds; designed to maintain a moist wound environment
- Thin, soft, and highly conformable Minimises pain and damage at dressing change³²

With Safetac

- Foam dressing with soft silicone wound contact layer
- For low to moderately exuding wounds; designed to maintain a moist wound environment
- Soft and conformable foam dressing Can easily be cut to sizeMepilex XT can handle both low and
- high viscosity fluid⁴¹
- Minimise skin damage and pain at dressing changes⁴

Mepilex[®] Border Flex

With Safetac

- All-in-one bordered foam dressing with Flex Technology and soft silicone wound contact layer
- For moderately to highly exuding wounds; designed to maintain a
- moist wound environment The Flex Technology allows Mepilex® Border Flex to to adapt to the shape and movement of the patient increasing comfort and minimising risk of detachment.43,44
- The 5-layer dressing absorbs and trap exudate containing bacteria and keep the exudate away from the wound bed, even under compression therapy (in vitro)4
- Showerproof⁴⁶
- Minimise skin damage and pain at dressing changes³

Mepilex[®] Ag

With Safetac

- Antimicrobial foam dressing with soft silicone wound contact layer.
- For low to moderately exuding wounds, designed to maintain a moist wound environment
- Soft and conformable foam dressing
- Can easily be cut to sizeMepilex Ag kills wound-related pathogens within 30 minutes; and
- carries on doing so for up to 7 days (in vitro studies)43
- Minimise skin damage and pain at dressing changes³³

Mepilex[®] Border Aq

With Safetac

- Antimicrobial all-in-one bordered foam dressing
- For moderately to highly exuding wounds; designed to maintain a moist wound environment
- Combines excellent exudate management properties with antimicrobial action^{48,4}
- Minimise skin damage and pain at dressing changes³²

Exufiber[®]

- Gelling fibre dressing with silver (Exufiber Ag+) and without (Exufiber)
- For moderately to highly exuding wounds • Transforms into a gel
- that provide moist wound environment⁵⁰⁻⁵⁴ and softly conforms to the wound bed^{50,52,}
- The Hydrolock® Technology absorbs and locks in exudate, blood and bacteria^{50,51,55}*
- Transfers exudate away from

Exufiber® Aq+

- the wound bed to secondary dressing^{56,57} The high structural integrity enables one-piece dressing removal^{50-54,58,61}
- By reducing the number of microorganisms, Exufiber Ag+ can prevent the reformation of biofilm (in vivo)*. Exufiber Ag+ provides sustained antimicrobial effect for up to seven days
- Can easily be cut and used in cavities
- Exudate transfer dressings with silver (Mepilex Transfer Ag) and wothout (Mepilex
- Transfer) • Effectively transfer exudate to a secondary layer

With Safetac

- Very thin and conformable foam for difficult-to-dress
- Can easily be cut to size
 Mepilex Transfer Ag inactivates a broad range of microorganisms (in vitro studies)65
- Mepilex Transfer Ag combines a rapid antimicrobial effect within 30 min and a sustained effect up to 14 days (in vitro
- Minimise skin damage and pain at dressing changes^{32,66}

Mextra[®] Superabsorbent

- Superabsorbent dressing with breathable and non-strike-through
- For moderately to heavily exuding wounds
- Superabsorbent for high absorption and retention Protease modulating activity⁶⁸
- Can be used on venous leg ulcers
- under compression bandage • The wound pad traps the wound exudate containing bacteria and reduces the amount of bacteria e-entering⁷
- Conformable and easy to use⁷²

Granulox[®]

- Granulox is a hemoglobin-based spray for topical use on chronic wounds The hemoglobin provides the wound
- with the required oxygen by means of diffusion • Twice as many chronic wounds
- healed at 8–16 weeks compared to standard of care7
- Granulox is easy to handle and to apply

- Wound irrigation solution and gel for acute and chronic wounds such as venous leg ulcers
- Effective preservation with HOCl/ NaOCl against gram+/- bacteria, viruses, fungi and spores
- Reduce wound malodor⁷⁷

- Tubular self-retention bandage
- Suitable for dressing retention and skin covering⁷⁸ Provides a low level of elasticity and
- stretch, which allows patients of complete freedom of movement79 Available in a range of different sizes

* As part of a holistic biofilm management approach as per international guidelines (i.e. cleansing, debridement & reassessment)²⁶

Mepilex[®] Transfer Mepilex[®] Transfer Ag

Proving it every day

At Mölnlycke[®], we deliver innovative solutions for managing wounds, improving surgical safety and efficiency, and preventing pressure ulcers. Solutions that help achieve better outcomes and are backed by clinical and health-economics evidence.

In everything we do, we are guided by a single purpose: to help healthcare professionals perform at their best. And we're committed to proving it every day.

References: 1. Lauchli, S., Bayard, I., Hafner, J. et al. [Healing times and the need for hospitalization for leg ulcers of different etiologies]. Hautarzt 2013; 64: 12, 917–922. 2. Hafner, J., Nobbe, S., Partsch, H. et al. Martorell hypertensive ischemic leg ulcer: a model of ischemic subcutaneous arteriolosclerosis. Arch Dermatol 2010; 146: 9, 961–968. 3. Australian and New Zealand Clinical practice guidelines for prevention and management of Venous leg ulcers. 2011. 4. Hofman, D., Ryan, T.J., Arnold, F., et al. Pain in venous leg ulcers, Journal of Wound Care 1997; 6: 5, 222-224. [1997]. 5. Franks, P., Barker, J., Collier, M. et al. Management of patients with venous leg ulcer: Anothan, D., Nyah, J.S., Antou, F., et al. Franker, J., Outral, M., K., et al. Superior, J. S., Antou, F., et al. Superior, J. S., Marker, J., Source, J. Wound Care, 25; S. S., Marker, J., Source, J. Wound Care, 25; S. S., Mound, J. K. Setter, S. S., Setter, J., Gottrup, F., Lundgren, H., Saal, G. The resource impact of wounds on health-care providers in Europe. J. Wound Care 2009;18: 4,154–61. 8. Abbade, L.P., Lastoria, S., de Almeida Rollo, H., et al. A sociodemographic, clinical study of patients with venous lucer. Int J. Dermatol 2005; 44: 12, 989-992, 9. McDaniel, H.B., Marston, W.A., Farber, M.A., et al. Recurrence of chronic venous ulcers on the basis of clinical, etiologic, anatomic, and pathophysiologic criteria and air plethysmography. J Vasc Surg 2002; 35: 4, 723–728. 10. Finalyson, K., Wu, M.L., Edwards, H.E. Identifying risk factors and protective factors for venous leg ulcer recurrence using a theoretical approach: A longitudinal study. Int J Nurs Stud 2015; 52: 6,1042–1045. 11. Harding, K., et al. Simplifying venous leg ulcer management. Consensus recommendations. Wounds International 2015; 12. Sufian, S., Lakhangal, S., Marquez, J., et al. Superficial vein ablation for the treatment of primary chronic venous ulcers. Phebology 2011; 26: 301–6. 30. Openatoment, T.E., Parston, W.A. et al. Management of venous leguers and the advector for Vascular equidations of the Society for Vascular for Vascular expression and the American Vascular Vascular expression for the society of the Society for Vascular for Vascular expression. J. Advector Vascular expression and the American Vascular expression of the Society of the Society for Vascular for Vascular expression. J. Advector, V.A. et al. Management of Vascular expression and the American Vascular exp Consensus recommendations. Wounds International 2015. 12. Sufian, S., Lakhanpal, S., Marquez, J., et al. Superficial vein ablation for the treatment of primary chronic venous ulcers. Phlebology 2011; 26: 301-6. 13. O'Donnell, T.F., Passman, M.A., Marston, W.A. et al. Management of venous leg ulcers: Clinical practice guidelines of the Society for Vascular Surgery²⁰ and the American Venous Forum. Journal of Vascular Surgery 2014; 60: 2, 35–95, 14. Bjork, R., Ehmann, S., S.T.R.I.D.E. Professional guide to compression garment selection for the lower extremity. Journal of Wound Care 2019; 28! 60 suppl 11:1-44.15. World Union of Wound Healing Societies (WUWHS). Principles of best practice: Compression in venous leg ulcers. A consensus document. London: MEP Ltd, 2008. 16. Humphreys, M., Stewart, A., Gohel, M. et al. Management of mixed arterial and venous leg ulcers. Br J Surg 2007; 94: 9, 1104–1147. 17. O'Meara, S., Cullum, N., Nelson, E.A., et al. Compression for venous leg ulcers. Cochrane Database Syst Rev 2012; 15: CD002033. 19. Wounds UK. Best Practice Statement: Ankle brachial pressure index (ABPI) in practice. London: Wounds UK, 2019. 20. Principles of compression in venous disease: a practitioner's guide to treatment and prevention of venous leg ulcers. Wounds International, 2013. 21. Wounds UK. Best Practice Statement: Addressing complexities in the management of venous glucers. London: Wounds LW, 2019. 22. Gohel, M.S., Heatley, F., Liu, X. et al. A randomized trial of early endovenous ablation in venous ulcertion. N Engl J Med 2018;378(22): 2105–14. 23. International Wound Infection in clinical practice. Wounds International 2016. 24. Cutting, K.F., White, R.D. Beifned and refined: criteria for identifying wound infection revisited, British journal of community nursing 2004;Mar;9(3): 6-15. 25. Gardener, S.E., Frantz, R.A., Doebbeling, B.N. The validity of the clinical signs and symptoms used to identify chronic wound infection, Wounds International 2016. 27. Swanson, T., Grothier, L., Schultz, G. Wound I stripping of wound dressing adhesives. J Wound Care 2011;20:412-22. 32. White, R.A. Multinational survey of the assessment of pain when removing dressings. Wounds UK 2008;4:14-22. 33. David, F., Wutze, J-L., Breton, N., et al. A randomised, controlled, non-inferiority trial comparing the performance of a soft silicone-coated wound contact layer (Mepitel One) with a lipidocolloid wound contact layer (UrgoTul) in the treatment of acute wounds. Int Wound J 2017 doi:10.1111/iwj.12853. 34. Gotschall, C.S., Morrison, M.I., Eichelberger, M.R. Prospective, randomized study of the effic acy of Mepitel on children with partial-thickness scalds. J Burn Care Rehabil 1998;19:279-83. 35. Silverstein, P., Heimbach, D., Meites, H., et al. An open, parallel, randomized, comparative, multicenter study to evaluate the cost effectiveness, performance, tolerance, and safety of a silver-containing soft silicone foram dressing (intervention) vs silver sulfadiazine cream. J Burn Care Res 2011;32:617-26. 36. Gee Kee, E.L., Kimble, R.M., Cuttle, L., Khan, A., Stockton, K.A. Randomized controlled trial of three burns dressings for partial thickness burns in children. Burns 2015;41:946-55. 37. Meaume, S., Van De Looverbosch, D., Heyman, H., Romangherotti, A., Charpin, S. A study to compare a new self-adherent soft silicone dressing with a self-adherent polymer dressing in stage II pressure ulcers. Ostomy Wound Manage 2003; 49 (9): 44-51. 38. Wiberg, A-B., Feili, F., Daun, F.-K. Preventing maceration with a soft silicone dressing: in vitro evaluation. Poster presentation at the 3rd Congress of the World Union of Wound Healing Societies, Toronto, Canada, 2008. 39. Bredow J, Hoffmann K, Hellmich M, Eysel P, Zarghooni K. Randomized clinical trial to evaluate performance of flexible self-adherent absorbent dressing coated with silicone layer after hip, knee or spinal surgery in comparison to standard wound dressing. Poster presentation at the 5th Congress of the World Union of Wound Healing Societies, Florence, Italy, 2016. 40. Legsmatter.0rg. Report of POSO203, bias of the 47, contenting of a staff-driven quality improvement process. Dimensions Crit Care Nurs 2015;34:265-72. 50. Smet S., Beele, H., Saine, L., Suys, E., Henricky, B. Ores irtery bypa saphenous vein harvest inrough implementation of a start-driven duality improvement process. Dimensions Crit Care Nurs 2015;34:269-72, 50. Smet, S., beter, H., Saine, L., Suys, E., Henrick, B. Open, noncomparative, multi-centre post market clinical follow-up investigation to evaluate performance and safety on pressure ulcers when using a gelling fibre dressing as intend-ed. Poster Presentation at European Pressure Ulcer Advisory Panel Confer-ence, 2015, Ghent, Belgium, 51. Chadwick, P., McCardle, J. Open, non-comparative, multicentre post clinical study of the performance and safety of a gelling fibre dressing on diabetic foot ulcers. J Wound Care 2016;25:290-300. 52. Davies, P., McCartle, S. An in-use product evaluate exudate management and comfort of use of an antimicrobial gelling fibre dressing in Clinical Subject. The development and comfort of use of an antimicrobial gelling fibre dressing in the diversion of the dintedintediction of the Content (2017, har togate, online Alignon, 53, Lev-lover at. An interim analysis of clinical investigation to evaluate exclusion in analysis in a numericobial getting in the dressing of clinical investigation to evaluate exclusion in analysis of the dressing of the dres Unpublished), Absorption of blood. 62: Hamberg, N., et al. Antimicrobial effect of a new silver-containing gelling fi bre dressing against common wound pathogens. Poster presented at the Symposium on Advanced Wound Care Spring meeting/ Wound Healing Society (WHS) Annual Meeting 2017, Apr 05–09, 2017, San Diego, CA, USA. 63. Git, J., et al. 2017. Evaluation of a Gelling Fiber Dressing with Silver to Eliminate MRSA Wound Care Spring meeting/ Wound Healing Society (WHS) Annual Meeting 2017, Apr 05–09, 2017, San Diego, CA, USA. **63**. Git, J., et al. 2017. Evaluation of a Gelling Fiber Dressing with Silver to Eliminate MRSA Biofi Im Infections and Enhance the Healing. Poster presented at the Symposium on Advanced Wound Care Spring meeting/ Wound Healing Society (WHS) Annual Meeting 2017, Apr 05–09, 2017, San Diego, CA, USA. **64**. Davis, S. C., Li, J., Git, J. et al. Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model. Wound Rep Reg 2019;27: 360–365. **45**. External lab report; NAMSA 11C_51788, Q1. **66**. Grocott, P. Clinical investigation Mepilex[®] Transfer, Clinical Investigation of a silicone dressing in product development phase in the palliative management of patients with pressure sores and malignant wounds, study id MIN101 UK, London UK, 2000. **67**. Molnycke Health Care. Data on file, 2018. **68**. Wiegand C., et al. A superabsorbent polymer-containing wound dressing efficiently sequesters MMPs and inhibits collagenase activity in vitro. Journal of Materials Science Materials in Medicine. 2013;24(10):2473-2478. **69**. Molnycke Health Care. Data on file, 2014. **70**. Panca, M. CK, Guest, J.F. Clinical and cost-effectiveness of absorbent dressings in the treatment of highly exuding VLUs. J Wound Care. 2013;22:109-8. **71**. Molnycke Health Care. Data on file, 2019. **72**. Molnycke Health Care. Data on file, 2016. **73**. Hunt, S., Elg, F. Clinical effectiveness of hemoglobin spray (Granulox[®]) as adjunctive therapy in the treatment of chronic diabetic foot ulcers. Diabetic Foot & Ankle 2016; 7: 33101. **74**. Elg, F., Hunt, S. Hemoglobin spray as adjunct therapy in complex wounds; Weat–analysis versus standard care alone in pooled data by wound type across three retrospective cohort controlled evaluations. SAGE Open Med. 2018 Jun; 6:2050312118784313. **75**. Hunt, S., Elg, F. The clinical effectiveness of haemoglobin spray as adjunctive therapy in the treatment Join 1159/000481545. 78. Harding, K.G., Vanscheidt, W., Partsch, H. et al. Adaptive compression therapy for venous leg ulcers: A clinically effective, patient-centred approach. International Wound Journal.2016;13(3):317-25. 79. Eytier, C., Gazeau, E., Beneteau, G. et al. Convenience and tolerance of the combination of a soft silicone foam dressing and a two-way stretch tubular bandage in the management of local wounds. An observational study conducted by 304 registered nurses (RNs) on 2,401 patients. Results of TeMpO study. Journales des plaies et cicatrisations. 2013;88(18):38-44.

Mölnlycke Health Care AB, Box 13080, Gamlestadsvägen 3C, SE-402 52 Göteborg, Sweden. Phone +46 31 722 30 00. The Mölnlycke, Mepilex, Mextra, Tubifast, Mepitel, TwoWay Stretch, Granulox, Granudacyn, Exufiber, Exufiber Ag+, Hydrolock and Safetac trademarks, names and logotypes are registered globally to one or more of the Mölnlycke Health Care group of companies. © 2020 Mölnlycke Health Care AB. All rights reserved. HOIM002156